Targets for Rep-rated Lasers

Rich Stephens
Neil Alexander, and Dan Goodin
General Atomics

3rd International Workshop on High Energy class Diodepumped Solid State Lasers Livermore, CA 19 May 2006

Targets are currently used in small numbers

Made a few at a time

Many are 3-D strucures

Individually assembled and characterized

Individually inserted and aligned

Proton beam focusing

300 μm Cone-wire e transport

Rep-rated lasers require a new approach

Characteristics

- Many more targets
- Rapid insertion and alignment

Suggests

- Mass operations
- Automatic handling

Maintain

- flexibility in target design
- 3-D structures

Low powered lasers can just use a grid

 Targets are not affected by nearby shots

LALTI[†] system will be higher power

†Laboratory for Advanced Laser Target Interactions

Laser pulses

- E~10-100 J,
- T~100-300 fs
- $1 \sim 10^{20} \text{ W/cm}^2$

Initial Shot rate

- 10 shots/hr
- 50 shots/day (6000 targets/yr)

Developed shot rate

- 1 shot/second
- 1000 shots/day

Requires

- Separation and protection of targets
- Cheap targets
- Mass Production

Targets must be precisely placed

proton accelerating surface

Laser, diagnostics, and target come to common center

Each step in the targeting system must be integrated

- Mass target production
- Auto pick & place onto carriers
- Target location measured relative to carrier
- Chain-linked carriers for insertion

The end result is a chain of targets brought one-by-one to the shot point

—Must be fast & accurate

Mass produce and dice for large target numbers

Single point diamond turning on a lathe

- Use a thick substrate for stable support
- Fast tool servo produces individual structures
- Single point diamond produces smooth surfaces

- Sputtering, electroplating
 - Adds layers
- E-beam lithography
 - Adds individual structures
- Laser or electric-discharge machining
 - Produce divots or holes
- Milling
 - Separates individual targets

Targets assembled with automated pick & place

Automated microscopy characterizes assembly

Common carrier is used to carry many target types

- Long posts to separate belts in reel
- Fiducials for target insertion in plate, and alignment in chamber
- Identifier to specify target
- Sprockets for handling transport and alignment

Targets on reels can be put into target chamber without opening

- Target located with reference to fiducials
- Location and kind associated with plate id number
- Linked targets reeled into portable vacuum chamber

Target carriers are placed on a central alignment system

- Adjacent targets are shielded from laser shot
- Translation stage positions target at based on fiducial position
 - Uses actual target location based on characterization data
- Target is aligned by fiducials independent of target type
- Motors, etc have to be turned off during shot

Each target type takes some planning

- Planar multilayers metal & solid plastic
- Planar including foam
- Thickness steps
- Windows access holes
- Multi planes
- Isolated Surface structures bumps, divots
- Repeated surface structures
- ??????? you name it (please)